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Abstract
Let R be a commutative semiring with identity, and U be a unitary left R-semimodule. The small intersection graph of non-

trivial subsemimodules of U, denoted by Γ(U), is an undirected simple graph whose vertices are in one-to-one correspondence
with all non-trivial subsemimodules of U and two distinct vertices are adjacent if and only if the intersection of corresponding
subsemimodules is a small subsemimodule of U. In this article, we investigate connections between the graph-theoretic properties
of Γ(U) and some algebraic properties of semimodules. We determine the diameter and the girth of Γ(U). We obtain some
results for connectivity and planarity of these graphs. Moreover, it is shown that the domination number of a small intersection
graph of a semimodule is 1 , whenever U is a subtractive semimodule and direct sum of two simple semimodules.
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1. Introduction

Bosak in 1964 [8] introduced the idea of the intersection graph of semigroups. Several other classes of
graphs related with algebraic constructions have been also actively examined. For instance, see ([4],[5],[6],[9]).
In 2012, the authors in [1] have recognized the intersection graph of submodules of a module. In 2021, the
small intersection graph of submodules of a module has been studied by Mahdavi and Talebi in [13]. In this
paper, we introduced the small intersection graph of subsemimodules of a semimodule. Our chief goal is to
study the joining among the algebraic properties of semimodules and the graph theoretic properties of the
graph related with it.

In Section 2, we show that Γ(U) is complete if either U is a subtractive semimodule and direct sum
of two simple semimodules or U is hollow semimodule. We proved that if U be a subtractive semisimple
semimodule such that it is not simple, then diam(Γ(U)) ⩽ 3. We establish that if |S(U)| ∈ {1, 2} and under
some condition, then Γ(U) is a planar graph. Moreover, if |S(U)| ⩾ 3, then Γ(U) is not a planar graph.
In Section 3, we show that if U = N ⊕ L is a subtractive semimodule, where N and L are two simple
semimodules, then γ(Γ(U)) = 1.

Throughout this paper R is a commutative semiring with identity and U is a unitary left R semimodule. A
commutative semiring R is defined as an algebraic structure (R,+, ·) where (R,+) and (R, ·) are commutative
semigroups, joined by a(b+ c) = ab+ ac for all a,b and c of R and there exist 0, 1 ∈ R such that r+ 0 = r

and r0 = 0r = 0 and 1r = r for all r of R see ([2], [3], and [11]).
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Let (U,+) be an additive abelian monoid with additive identity 0 , then U is a left R-semimodule
if there exists a scalar multiplication R × U → U denoted by (r,u) → ru, such that (rr′)u = r (r′u);
r (u+ u′) = ru + ru′; (r+ r′)u = ru + r′u; and 0u = r0U = 0U for all r, r′ ∈ R and all u,u′ ∈ U. If
the condition 1u = u for all u ∈ U hold then the semimodule U is said to be unitary. A subset N of
an R-semimodule U is called a subsemimodule of U, we write N ⩽ U (or N ⊆ U ), if for n,n′ ∈ N

and r ∈ R,n + n′ ∈ N and rn ∈ N. A subsemimodule N is called a subtractive subsemimodule (or k

subsemimodule) of U if x, x+ y ∈ N, then y ∈ N [11]. We say an R-semimodule is subtractive if each of
its R-subsemimodules is subtractive. We mean from a non-trivial subsemimodule of U is a non-zero proper
subsemimodule of U. A subsemimodule N of an R-module U is called small (= superfluous) in U (we
write N ≪ U ). if for every subsemimodule L ⩽ U, with N+ L = U implies that L = U [14]. A nonzero
R-semimodule U is called hollow, if every proper subsemimodule of U is small in U. The semimodule U

is called simple if it has no proper subsemimodules, and U is said to be semisimple if it is a direct sum
of simple subsemimodules. A subsemimodule M of a semimodule U is maximal if and only if it is not
properly contained in any other subsemimodule of U. An R-semimodule U is said to be local if it has a
unique maximal subsemimodule M and we denote it by (U,M). The set of maximal subsemimodules of U
is denoted by max(U). The Jacobson radical of an R-semimodule U, denoted by Rad(U), is the sum of all
small subsemimodules of U, and also, is the intersection of all maximal subsemimodules of U. The socle
of a semimodule U, denoted by Soc(U), is the sum of all simple subsemimodules of U. The reference for
semimodule theory is [11]; for graph theory is [7].

Let Γ be a graph with the vertex set V(Γ) and edge set E(Γ). The order of Γ is the number of vertices
of Γ and we denoted it by |Γ |. A graph Γ is finite, if |Γ | < ∞, otherwise, Γ is infinite. If u and v are two
adjacent vertices of Γ , then we write u− v. The degree of a vertex v in a graph Γ , denoted by deg(v), is the
number of edges incident with v. The minimum degree of Γ is δ(Γ). Let u and v be two distinct vertices of
Γ . An u, v-path is a path with starting vertex u and ending vertex v. For distinct vertices u and v, d(u, v)
is the least length of an u, v− path. If Γ has no such a path, then d(u, v) = ∞. The diameter of Γ , denoted
by diam(Γ), is the supremum of the set {d(x,y) : u and v are distinct vertices of Γ }. A cycle in a graph is a
path of length at least 3 through different vertices which begins and ends at the same vertex. The girth of
a graph Γ , denoted by gr(Γ), is the length of a shortest cycle in Γ , provided Γ contains a cycle; otherwise;
gr(Γ) = ∞. A graph is called connected, if there is a path between every pair of vertices of the graph. A
tree is a connected graph which does not contain a cycle. A star graph is a tree consisting of one vertex
adjacent to all the others. A complete graph with n distinct vertices, denoted by Kn. A complete bipartite
graph with two part sizes m and n is denoted by Km,n. By a clique in a graph Γ , we mean a complete
subgraph of Γ .

2. Connectivity, Diameter And Girth of Γ(U)

In this section, we characterize some semimodules whose small intersection graphs of nontrivial subsemi-
modules are connected and complete. Also, the diameter and the girth of Γ(U) are determined.

Definition 2.1. The small intersection graph of non-trivial subsemimodules of an R-semimodule U, denoted
by Γ(U), is an undirected simple graph whose vertices are in one-to-one correspondence with all non-trivial
subsemimodules of U and two distinct vertices N and L are adjacent if and only if N∩ L ≪ U.

Proposition 2.2. Let U be an R-semimodule with the graph Γ(U). Then Γ(U) is complete, if one of the
following holds.

(1) If U = U1 ⊕U2 is a subtractive semimodule, where U1 and U2 are two simple R-semimodules.

(2) If U is hollow.

Proof. (1) Let a left subtractive R-semimodule U be a sum U = U1 ⊕U2 such that U1 and U2 are two
simple R-semimodules. So by [12, Theorem 3.10], U1 +U2 = U and U1 ∩U2 = {0}. Then every nontrivial
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subsemimodule of U is simple. Let N and L be two distinct vertices of the graph Γ(U). Then they are
the non-trivial subsemimodules of U which are simple and minimal. Furthermore, N ∩ L ⊆ N,L and if
N ∩ L ̸= (0), then minimality of N and L implies that N ∩ L = N = L, which is a contradiction. Thus,
N∩ L = (0) ≪ U, hence Γ(U) is a complete graph.
(2) Let U be a hollow R-semimodule. Suppose that N1 and N1 are two distinct vertices of the graph Γ(U).
Hence N1 and N1 are two nonzero small subsemimodules of U. As N1 ∩N2 ⊆ Ni, for i = 1, 2, by [14,
Proposition 3], N1 ∩N2 ≪ U, hence Γ(U) is a complete graph.

By Part 2 of Proposition 2.2, we have the following corollary.

Corollary 2.3. Let U be an R-semimodule. Then the following hold:

(1) If U is a local semimodule, then the graph Γ(U) is complete.

(2) Every nonzero small subsemimodule of U is adjacent to all other vertices of Γ(U) and the induced
subgraphs on the sets of small subsemimodules of U are cliques.

(3) If the subsemimodules of U form a chain, then the graph Γ(U) is complete.

Proof. (1) Suppose that U is a uniserial R-semimodule. Then each two nontrivial subsemimodules of U are
comparable. Clearly, every nontrivial subsemimodule of U is a small subsemimodule. Hence, U is a hollow
R-semimodule. So, by Proposition 2.2(2), Γ(U) is complete. Also, if U is a local R-semimodule, then local
R-semimodules are hollow. Again, by Proposition 2.2(2), Γ(U) is complete.
(2) Evident.
(3) If the subsemimodules of U form a chain, then it is easy to check that any two vertices of Γ(U) are
adjacent.

Example 2.1. Assume Z0 = Z+ ∪ {0} is the semiring of non-negative integers, then the Z0-semimodule
Z0 is local with maximal subsemimodule N = Z0\{1}, see [11], So, it is hollow. Also, For every prime
number p and for all n ∈ Z+with n ⩾ 2, the Z-semimodule Zpn is local, then it is hollow. Also, since any
two subsemimodules of Z-semimodule Zp∞ are comparable, then every proper subsemimodule of Zp∞ is
small in Zp∞ . Hence for every prime number p, the Z-semimodule Zp∞ is hollow. By Proposition 2.2 (2),
Γ (Z0) , Γ (Zpn) and Γ (Zp∞) are complete graphs.

Example 2.2. Consider the semiring R = {0, 1,u} with the following addition and multiplication:

(a) 0+ 0 = 0, 0 + 1 = 1, 0 + u = u, 1 + 1 = 1, 1 + u = 1,u+ u = u.

(b) 0× 0 = 0, 0 × 1 = 0, 0 × u = 0, 1 × 1 = 1, 1 × u = u,u× u = u.

R is a commutative semiring with identity 1 . Also, {0,u} is a unique nontrivial subsemimodule of the
R-semimodule R. Thus |Γ (RR)| = 1, and Γ (RR) ∼= K1.

Example 2.3. Set R = B
(
ph, 0

)
=

{
0, 1, · · · ,ph − 1

}
, where p is a prime integer and h ∈ Z+and define

an operation ⊕ on R as follows: If a,b ∈ R then a⊕ b = a+ b if a+ b ⩽ ph − 1 and, otherwise, a⊕ b is
the unique element c of R satisfying c ≡ a+ b

(
modph

)
. Define the an operation ⊙ on R similarly. Then,

(R,⊕,⊙) is a local semiring, see [11, Example 6.1]. So, the graph of the R-semimodule R is complete, by
Part 2 of Corollary 2.3.

Theorem 2.4. [12, Theorem 3.10] let U be a subtractive R-semimodule. Then U is semisimple and each if
and only if for every subsemimodule N ⊆ M, there exists a subsemimodule K ⊆ M such that M = N+ K

and N∩K = 0.

In [10.2.8(9)], the result was proved for modules. we will prove it for semimodules.

Lemma 2.5. Let U be a subtractive R-semimodule. Then Soc(Rad(U)) ≪ U.
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Proof. Put N = Soc(Rad(U)) and assume U = N+K for some subsemimodule K ⊆ U. Setting V = N∩K,
we have N = V ⊕ V ′ for some V ′ ⊆ N and U = N+K = (V ⊕ V ′) +K = V ′ ⊕K, by Theorem 2.4. Now any
simple subsemimodule of V ′ is a direct summand of (V ′ and) U and is small in U and thus is zero. Hence,
V ′ = 0 and so K = U, therefore N ≪ U.

Lemma 2.6. (1) Let U be a subtractive semimodule and N be a finitely generated subsemimodule of U

which is contained in Rad(U). Then N ≪ U.

(2) Let U be a subtractive semimodule and N be a semisimple subsemimodule of U which is contained in
Rad(U). Then N ≪ U.

Proof. (1) Suppose that N ⩽ U is finitely generated. Then, N = Rn1 + Rn2 + · · ·+ Rnr for some ni ∈ N,
1 ⩽ i ⩽ r. By [14], Rni ≪ U, since U is subtractive and Rni ⊆ Rad(U). By [14, Proposition 3(b)], N ≪ U.
(2) Suppose that N is a semisimple subsemimodule of U. Then Soc(N) = N and since N ⊆ Rad(U),
Soc(N) ⊆ Soc(Rad(U)). Also, by Lemma 2.5, Soc(Rad(U)) ≪ U. Thus by [14, Proposition 3( b)],N ≪
U.

Proposition 2.7. [11, Proposition 14.22] (Semimodularity Law) Let U be a semimodule over semiring R and
let N and K be subsemimodules of U. Let L be a k-subsemimodule of U with N ⊆ L. Then L∩ (N+K) =
N+ (L∩K).

Proposition 2.8. Let U be a subtractive semimodule with the graph Γ(U) and Rad(U) ̸= (0). Then the
following conditions hold:

(1) If N is a non-trivial subsemimodule of U which is direct summand of U with (0) ̸= Rad(N) ≪ U, then
Γ(U) contains at least one cycle of length 3 .

(2) If T is a non-trivial finitely generated or semisimple subsemimodule of U contained in Rad(U). Then
d(T , Rad(U)) = 1 and d(T ,L) = 1 for every non-trivial subsemimodule L of U.

Proof. (1) Since N is a direct summand of U, by [12, Theorem 3.10], then there exists a subsemimodule
K of U such that N⊕ K = U. Then Rad(N)⊕ Rad(K) = Rad(U). Since Rad(N) ⊆ N and N∩ Rad(K) ⊆
N∩K = (0), by the semimodularity law (Proposition 2.7), N∩Rad(U) = Rad(N). Then N∩Rad(U) ≪ U.
Also, Rad(N) = N ∩ Rad(N) ≪ U and Rad(N) = Rad(N) ∩ Rad(U) ≪ U and we haved (N, Rad(U)) =
1, d(N, Rad(N)) = 1 andd(Rad(N), Rad(U)) = 1. Hence, {N, Rad(N), Rad(U)} is a cycle. Thus, the
graph Γ(U) contains at least one cycle of length 3.
(2) Suppose that T is a non-trivial finitely generated or semisimple subsemimodule of U. Then by Lemma
2.9, T ≪ U. Since T ⊆ Rad(U), T = T ∩ Rad(U) ≪ U and since T ∩ L ⊆ T , T ∩ L ≪ U for every other
non-trivial subsemimodule L of U. Hence d(T , Rad(U)) = 1 and d(T ,L) = 1.

Corollary 2.9. Let U be a subtractive R-semimodule. If U has at least one non-zero small subsemimodule,
then Γ(U) is a connected graph and diam (Γ(U)) ⩽ 2.

Corollary 2.10. Let U be a subtractive R-semimodule with Rad(U) ̸= (0). Then Γ(U) is a connected graph,
if one of the following holds.

(1) The semimodule U is finitely generated.

(2) There exists a non-trivial subsemimodule of U which is finitely generated or semisimple contained in
Rad(U).

Proof. Part 1 is obvious and Part 2 follows from Lemma 2.6(2) and Corollary 2.9.

Proposition 2.11. Let U be an R-semimodule with graph Γ(U). If Γ(U) has no isolated vertex, then Γ(U) is
connected and diam(Γ(U)) ⩽ 3.
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Proof. Let A and B be two non-adjacent vertices of Γ(U). Since Γ(U) has no isolated vertex, there exist
subsemimodules A1 and B1 such that A ∩A1 ≪ U and B ∩ B1 ≪ U. Now, if A1 ∩ B1 ≪ U, then A−A1−
B1 − B is a path of length 3. Otherwise A−A1 ∩ B1 − B is a path of length 2. It follows that Γ(U) is a
connected graph and diam (Γ(U)) ⩽ 3.

Theorem 2.12. Let U be a subtractive semisimple R-semimodule such that it is not simple. Then the
following statements hold:

(1) The graph Γ(U) has no isolated vertex.

(2) The graph Γ(U) is connected and diam(Γ(U)) ⩽ 3.

Proof. (1) Let X be a vertex of the graph Γ(U). Since U is subtractive semisimple semimodule, then every
subsemimodule of U is a direct summand of U by [12, Theorem 3.10]. Thus there exists a subsemimodule
Y of U such that U = X⊕ Y. Hence X ∩ Y = (0) ≪ U and thus, there exists an edge between vertex X of
Γ(U) and another vertex of this graph. Then X is not an isolated vertex. Consequently, Γ(U) has no isolated
vertex.
(2) By Proposition 2.14 and Part 1.

In the next example we give a semimodule U such that it is not semisimple and the graph Γ(U) is
connected and diam(Γ(U)) = 1.

Example 2.4. Let Z18 be a Z-semimodule. Then V (Γ (Z18)) = {⟨2⟩, ⟨3⟩, ⟨6⟩, ⟨9⟩}, the graph Γ (Z18) is
connected and diam (Γ (Z18)) = 1. See Figure.1

Figure 1: Γ (Z18)

Example 2.5. Consider Z24 the semiring of integers modulo 24 as a Z-semimodule. Then V (Γ (Z24)) =
{⟨2⟩, ⟨3⟩, ⟨6⟩,
⟨9⟩}, the graph Γ (Z24) is connected and diam (Γ (Z24)) = 2. See Figure 2

Figure 2: Γ (Z24)

For a semimodule U we use S(U) which denotes the set of non-zero small subsemimodules of U.
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Proposition 2.13. Let U be an R-semimodule and |S(U)| ⩾ 1. If Γ(U) is a tree, then Γ(U) = K1 or Γ(U) is a
star graph.

Proof. Assume that Γ(U) is a tree. Then |S(U)| < 2. Otherwise, let X and Y be two non-zero small
subsemimodules of U. So (X,X ∩ Y, Y) is a cycle of length 3 , a contradiction. Since |S(U)| ⩾ 1, then
|S(U)| = 1. Hence, U has a unique non-zero small subsemimodule. Let N ∈ S(U). For every vertex L

of Γ(U), if L = N, then Γ(U) ∼= K1 and if L ̸= N, as L ∩N ≪ U, we deduce Γ(U) ∼= K2. Now, let Ω =
{vi | vi ̸= N, i ∈ I}. Then every two arbitrary distinct vertices vi and vj, i ̸= j, are not adjacent and for
i ̸= j, vi −N− vj is a path and hence Γ(U) is star graph.

Proposition 2.14. Let U be an R-semimodule with the graph Γ(U). If |S(U)| ⩾ 2, then Γ(U) contains at least
one cycle and gr(Γ(U)) = 3.

Proof. Suppose that |S(U)| ⩾ 2. Then U has at least two different nonzero small subsemimodules, say N1
and N2. Since N1 ∩N2 ⊆ Ni, for i = 1, 2, by [14, Proposition 3(a)], N1 ∩N2 ≪ U. Also, N1 ∩ (N1∩
N2) ≪ U and N2 ∩ (N1 ∩N2) ≪ U. We consider two possible cases for N1 ∩N2.

Case 1: If N1 ∩N2 ̸= (0), then d (N1,N2) = 1,d (N1,N1 ∩N2) = 1 and d (N2,N1 ∩N2) = 1. Thus
(N1,N1 ∩N2,N2) is a cycle of length 3. Also by [14, Proposition 3(b)], N1 +N2 ≪ U and since N1∩
(N1 +N2) ≪ U and N2 ∩ (N1 +N2) ≪ U, ( N1,N1 +N2,N2) is a cycle of length 3. Similarly, (N1∩
N2,N1,N1 +N2) and (N1 ∩N2,N2,N1 +N2) are cycles of length 3 and (N1, (N1 +N2) ,N2,N1 ∩N2,N1)
is a cycle of length 4.

Case 2: If N1 ∩N2 = (0), then (N1,N1 +N2,N2) is a cycle of length 3 in the graph Γ(U). Therefore,
Γ(U) contains at least one cycle and so gr(Γ(U)) = 3.

3. Domination And Planarity of Γ(U)

In this section, we conclude the domination of Γ(U). Also, we revision the relationship between the
planarity of Γ(U) and the nonzero small subsemimodules of U.

We recall that for a graph Γ , a subset D of the vertex-set of Γ is called a dominating set (or DS) if every
vertex not in D is adjacent to a vertex in D. The domination number, γ(Γ), of Γ is the minimum cardinality
of a dominating set of Γ .

In this paper, a subset D of the vertex set of the graph Γ(U) is a DS if and only if for any nontrivial
subsemimodule N of U there is a L in D such that N∩ L ≪ U.

Lemma 3.1. Let U be an R-semimodule with |Γ(U)| ⩾ 2, then the following hold:

(1) If D is a subset of the vertex set of the graph Γ(U) such that D either contains at least one small
subsemimodule of U or there exists a vertex X ∈ D which X∩Y = (0), for every vertex Y ∈ V(Γ(U))\D.
Then D is a DS in Γ(U).

(2) If U has at least one nonzero small subsemimodule, then for each nonzero small subsemimodules X of
U, {X} is a DS and γ(Γ(U)) = 1.

Proposition 3.2. Let U = N⊕L be a subtractive R-semimodule, where N and L are two simple R-semimodules.
Then γ(Γ(U)) = 1.

Proof. Assume U = N⊕ L, such that N and L are two simple R-semimodules. By Proposition 2.2 (1), Γ(U)
is a complete graph. Let X be an arbitrary vertex of the graph Γ(U). Then for any distinct vertex Y of
Γ(U),X∩ Y ≪ U, thus {X} is a DS and γ(Γ(U)) = 1.
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Theorem 3.3. Let U be a R-semimodule with |S(U)| ⩾ 2 and |Γ(U)| ⩾ 3. Then the following conditions hold:

(1) If I and J are two small subsemimodules of U then there exists K ∈ V(Γ(U) ) such that K ∈ N(I)∩
N(J).

(2) The graph Γ(U) has at least one triangle.

Proof. It is clear.

Proposition 3.4. Let U be an R-semimodule. Then the following are equivalent:

(1) The graph Γ(U) has no triangle.

(2) If {I, J} ∈ E(Γ(U)), then there is no K ∈ V(Γ(U) ) such that K ∈ N(I)∩N(J).

(3) The semimodule U has at most one nonzero small subsemimodule such that the intersection of every
pair of the non-small nontrivial subsemimodules of U is non-small.

Proof. (1) ⇒ (2) It is clear.
(2) ⇒ (3) Assume that for every two adjacent vertices of the graph Γ(U), there is no K ∈ V(Γ(U)) such
that K ∈ N(I) ∩N(J). Let there exist at least two nonzero small subsemimodules S1 and S2 of U. Since
S1 ∩ S2 ≪ U, they are adjacent vertices of the graph Γ(U) and also, there is no K ∈ V(Γ(U)) such that
K ∈ N(I)∩N(J), which is a contradiction by Theorem 3.3(1).
(3) ⇒ (1) Assume U has no nonzero small subsemimodule. Since the intersection of every pair of the
non-small nontrivial subsemimodules of U is non-small, Γ(U) has no triangle. Moreover, Let S be the only
nonzero small subsemimodule of U. Then for every three arbitrary vertices N1,N2, and N3 of the graph
Γ(U), at least two of them are non-small. Let S = N1. As N2 ∩N3 is non-small subsemimodules of U, then
N2 − S−N3 is a path. Also if S ̸= Ni, for i = 1, 2,3. Since Ni ∩Nj is non-small subsemimodules of U, for
i, j = 1, 2, 3 and i ̸= j, then N1,N2, and N3 are not adjacent vertices in the graph Γ(U). Hence, there is no
triangle in the graph Γ(U).

Proposition 3.5. Let U be a finitely generated subtractive R-semimodule such that Rad(U) ̸= (0), then the
graph Γ(U) has a triangle.

Proof. Since U is a finitely generated R-semimodule, hence (0) ̸= Rad(U) ≪ U according to [14, Proposition
7]. We consider two possible cases for Rad(U).

Case 1: If Rad(U) is a simple subsemimodule of U, since Rad(U) = ∩i∈IUi, where Ui is the maximal
subsemimodules of U, for all i ∈ I, we choose N = ∩i∈I−{1}Ui. Then {U1,N , Rad(U)} is a triangle in the
graph Γ(U).

Case 2: If Rad(U) is not a simple subsemimodule of U, then there exists a non-trivial subsemimodule X

of U which X ⊂ Rad(U). By [14, Proposition 7], Rad(U) ≪ U. And by [14, Proposition 3], X ≪ U. Thus
for each vertex Y of Γ(U), {X, Y, Rad(U)} is a triangle in Γ(U).

Example 3.1. Let p be a prime number. Consider Zp3 as a Z-semimodule. There are only two non-trivial
subsemimodules pZp3 and p2Zp3 such that pZp3 + p2Zp3 ̸= Zp3 . Hence pZp3 and p2Zp3 are small. So,
pZp3 ∩ p2Zp3 ≪ Zp3 . Thus Γ

(
Zp3

)
∼= P2.

Definition 3.6. [7] A graph is said to be planar, if it has a drawing in a plane without crossings.

Theorem 3.7. [7, Theorem 10.30] A graph is planar if it contains no subdivision of either K5 or K3,3.

Proposition 3.8. Suppose that the intersection of every pair of non-small subsemimodules of U is a nonsmall
subsemimodule. If |S(U)| = 1 or |S(U)| = 2, then Γ(U) is a planar graph.
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Proof. Assume that |S(U)| = 1. Then Γ(U) contains a vertex I which is adjacent to each other vertex.
According to assumption, if N ̸= I and K ̸= I are two distinct vertices of Γ(U), then N and K are not
adjacent vertices. Thus Γ(U) is a star with center I. So Γ(U) is a planar graph. Now, if |S(U)| = 2, then
Γ(U) does not contain K3,3 or K5 and by Theorem 3.7, thus Γ(U) is a planar graph.

The next proposition exhibits that the planarity of Γ(U) limits the order of S(U).

Proposition 3.9. If |S(U)| ⩾ 3, then Γ(U) is not a planar graph.

Proof. Suppose that |S(U)| ⩾ 3. Then U has at least three different nonzero small subsemimodules, say
M,N and P. Obviously, any one of the vertices M+N,N+ P and M+ P are non-zero subsemimodule and
adjacent to each of subsemimodules M,N and P in Γ(U). Therefore, Γ(U) contains a complete graph K5
such as the subgraph induced on the set {M,N,P,M+N,N+ P}. Hence, by the definition of planar graph
in Theorem 3.7, Γ(U) is not a planar graph.

Finally, we give the following main result.

Proposition 3.10. Let U = V ⊕W be a finitely generated subtractive R-semimodule such that Rad(V) ̸= (0)
and Rad(W) ̸= (0). Then the graph Γ(U) is not planar.

Proof. Let U = V ⊕W. Then Rad(U) = Rad(V)⊕ Rad(W) and Rad(V) ∩ Rad(W) = (0) ≪ U. Also
Rad(V) ⊆ V and V ∩ Rad(W) ⊆ V ∩W = (0), and so the Semimodularity Law (see Proposition 2.10),
implies that V ∩ Rad(U) = Rad(V) and similarly, W ∩ Rad(U) = Rad(W). Moreover, V∩ Rad(V) =
Rad(V) ≪ U, W ∩ Rad(W) = Rad(W) ≪ U, V ∩ Rad(U) = Rad(V) ≪ U, W∩ Rad(U) = Rad(W) ≪
U, Rad(V)∩Rad(U) = Rad(V) ≪ U and Rad(W)∩Rad(U) = Rad(W) ≪ U. Hence V,W, Rad(V), Rad(W)
and Rad(U) are adjacent vertices in the graph Γ(U). So, the set {V,W, Rad(V), Rad(W), Rad(U)} induces
a complete subgraph K5 in Γ(U). Thus, according to Theorem 3.7, Γ(U) is not a planar graph.
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